3.1094 \(\int \cos ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=154 \[ \frac{8 a^2 (A+C) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 (A-5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{8 C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \sqrt{\cos (c+d x)}}+\frac{2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(4*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*(A + C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(A - 5*
C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))
 + (8*C*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.467617, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.229, Rules used = {4114, 3044, 2975, 2968, 3023, 2748, 2641, 2639} \[ \frac{8 a^2 (A+C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 (A-5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{8 C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \sqrt{\cos (c+d x)}}+\frac{2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*(A + C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(A - 5*
C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))
 + (8*C*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

Rule 4114

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx &=\int \frac{(a+a \cos (c+d x))^2 \left (C+A \cos ^2(c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \int \frac{(a+a \cos (c+d x))^2 \left (2 a C+\frac{3}{2} a (A-C) \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{3 a}\\ &=\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{4 \int \frac{(a+a \cos (c+d x)) \left (\frac{3}{4} a^2 (A+3 C)+\frac{3}{4} a^2 (A-5 C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{4 \int \frac{\frac{3}{4} a^3 (A+3 C)+\left (\frac{3}{4} a^3 (A-5 C)+\frac{3}{4} a^3 (A+3 C)\right ) \cos (c+d x)+\frac{3}{4} a^3 (A-5 C) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=\frac{2 a^2 (A-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{8 \int \frac{\frac{3}{2} a^3 (A+C)+\frac{9}{4} a^3 (A-C) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{9 a}\\ &=\frac{2 a^2 (A-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\left (2 a^2 (A-C)\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (4 a^2 (A+C)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{8 a^2 (A+C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 (A-5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.46694, size = 1040, normalized size = 6.75 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(9/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(-(((A - 2*C + A*Cos[2*
c])*Csc[c]*Sec[c])/d) + (A*Cos[d*x]*Sin[c])/(3*d) + (A*Cos[c]*Sin[d*x])/(3*d) + (C*Sec[c]*Sec[c + d*x]^2*Sin[d
*x])/(3*d) + (Sec[c]*Sec[c + d*x]*(C*Sin[c] + 6*C*Sin[d*x]))/(3*d)))/(A + 2*C + A*Cos[2*c + 2*d*x]) - (4*A*Cos
[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a +
 a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-
(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*
Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*C*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*
x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
+ Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (A*Cos[c + d*x]^4*Csc[
c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4},
 Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 +
Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((S
in[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
)/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + A*Cos[2*c +
 2*d*x])) + (C*Cos[c + d*x]^4*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((Hype
rgeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Co
s[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Ta
n[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x +
ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[
c]^2]]))/(d*(A + 2*C + A*Cos[2*c + 2*d*x]))

________________________________________________________________________________________

Maple [B]  time = 5.49, size = 651, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*A*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-6*A*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-4*A*cos(
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+4*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+
1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4
-2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+sin(1/2*d*x
+1/2*c)^2*cos(1/2*d*x+1/2*c)*A-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))+7*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*C)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{4} + 2 \, C a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{3} +{\left (A + C\right )} a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} + 2 \, A a^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right ) + A a^{2} \cos \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*a^2*cos(d*x + c)*sec(d*x + c)^4 + 2*C*a^2*cos(d*x + c)*sec(d*x + c)^3 + (A + C)*a^2*cos(d*x + c)*s
ec(d*x + c)^2 + 2*A*a^2*cos(d*x + c)*sec(d*x + c) + A*a^2*cos(d*x + c))*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)